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Abstract 

In semiclassical approximation Schroedinger equation is known to reduce to classical Hamilton-Jacobi equation. These equations 

look strikingly similar. An idea that just the Hamilton-Jacobi equation became a prototype of the Schroedinger equation arises. 

Arguments in favour of this assumption are supplied. Then it is no wonder that Aharonov-Bohm effect was recently derived directly 

from the classical Hamilton-Jacobi equation (without using Schroedinger equation), and hence, it is, in fact, of classical origin. The 

electron-field interaction is explained within the framework of classical electrodynamics. Thus, the so-called unlocal interaction 

becomes unnecessary. 
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1 Introduction 

 

Speaking on Quantum Mechanics we will mean Erwin 

Shroedinger and Werner Heisenberg mechanics created 

in 1925-1926 rather that Quantum Physics or Theory 

founded by Max Planck in 1901. An analogy between 

classical and quantum mechanics is known to exist. Some 

physical effects, for instance, the normal Zeeman effect 

allow both quantum and classical treatment (by means of 

magnetic field effect on harmonic oscillations of the 

atomic electrons). One may believe that each physical 

analogy should have a mathematical description. For 

instance, optics-mechanical analogy follows from 

similarity between Fermat and Maupertuis (or Hamilton) 

principles. An analogy between Hydrodynamics and 

Electrodynamics is described by similarity between 

Helmholtz equation for the vorticity, vΩ  :  
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 and Faraday equation in the form  
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 for the magnetic field B.  

In contrast to the examples above, the existing analogy 

between the Quantum and Classical Mechanics has not 

been yet expressed mathematically. The basic 

Schroedinger equation (equivalent to the Heisenberg 

description) is postulated (or explained) rather than being 

derived [1]. It is known that Erwin Schroedinger was 

looking for adequate mathematics which should be able 

to describe all the relevant experiments. He found it: this 

is the Schroedinger equation for the wave function , 

which governs the Quantum Mechanics: 
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 , (1) 

where H


is the Hamilton operator. However, what is its 

analogue in classical mechanics?  

It is hard to believe that the equation he was looking 

for dawned upon him instantly. We will never know it for 

sure but let us assume that the prototype of the equation 

(1) was the classical Hamilton-Jacobi equation for the 

action S governing the classical mechanics and 

electrodynamics 
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t

S
. (2) 

There are a number of arguments in favour of this 

assumption. Formal similarity between equations (1) and 

(2) is too striking to be accidental. Ignoring the imaginary 

number i, they formally coincide with  S (and hence 

H  and vice versa). Similarity retains if the 

Hamiltonian H includes the electromagnetic field [2]. 

Equation (1) satisfies all the requirements. It is of the first 

order in time, otherwise, the causality principle would not 

hold: the time evolution of a system is determined by the 

Taylor series: t
ttt

ttt 

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(  for any 

moment (chosen to be initial), t being infinitesimal in 

order to ignore higher derivatives.  

In other words, the equation has to include   and 
t


. 

It has to be linear in order to satisfy the superposition 

principle, necessary, for instance, to describe motion of 
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atomic electrons. Of course, equation (2) is nonlinear as 

the classical Hamiltonian depends on quadratic term 

proportional to (S)
2
. But it is easy to overcome this 

obstacle: replacement of the physical quantities by 

corresponding operators makes the equation linear as 

(S)
2
 becomes 

2
S. There is another difficulty with the 

equation (2): solutions of partial differential equations of 

the first order in time describe only irreversible processes 

(like diffusion or heat transfer) whereas it is necessary to 

consider also periodic processes like motion of atomic 

electrons. Therefore E Schroedinger ad hoc inserted the 

imaginary unit i into his equation in order to get complex 

solutions as well. Because of that, equation (1) cannot be 

derived from the known principles or equations. 

In semiclassical (or WKB) approximation, when 

)/exp(),( iSta r . (3) 

Schroedinger equation (1) is known to reduce to the 

classical Hamiltom-Jacobi equation (2) [1, 3] if the 

second-order term proportional to 2  is neglected. In 

one's turn, in the same short wavelengths limit (called 

also the approximation of geometrical optics) equation 

(2) reduces to eikonal equation of the wave optics 

0







t
. (4) 

This equation sometimes is also called the Hamilton-

Jacobi equation (see, e.g. [4]). Here  is the phase 

(eikonal),  is the wave frequency. Comparing equations 

(2) and (4) and using the relation H  for the particle 

energy one obtains S . Thus, the eikonal /S  

may be considered as the phase of the de Broglie wave  

(3), with the frequency  /H  and wave vector 

/vk m . We arrive at the conclusion that Hamilton-

Jacobi equation (2) describes the wave-particle duality in 

classical physics. Notice that this is the only such an 

equation in classical physics. Of course, the roots of this 

duality are located in the close affinity between Fermat 

and Hamilton principles mentioned above. 

 

2 On the Aharonov-Bohm effect 

 

The Aharonov-Bohm effect was predicted in 1959 [5] in 

the semiclassical approximation (3). However, just in the 

same approximation of small wavelengths Schroedinger 

equation (1) reduces to the classical equations (2) and (4). 

This fact allows us to arrive at the same result as 

Aharonov and Bohm [5] without using equation (1) [6, 

7].  

One obtains the relation S  from comparison 

between classical equations (2) and (4) and using the 

relation H , which, by the way, has been known 

long before the creation of Quantum Mechanics in 1926. 

On the other hand, the action S for the system of the 

electric charge q in the magnetic field AB   is 

known to acquire an additional term Sin [8] 

 rAdqS
in , (5) 

due to interaction between the charge q and the field B. 

As /S , the phase shift  accumulated due to 

charge-field interaction equals 

 rAd
q


 . (6) 

Thus, we arrived at the Aharonov-Bohm effect 

without using the Schroedinger equation (1). 

No wonder that the Aharonov-Bohm effect has 

classical roots. As mentioned above, normal Zeeman 

effect also has these roots. Its explanation by means of H. 

A. Lorentz electron theory holds already more than a 

century, along with the explanation via Quantum 

Mechanics. These facts may be used as additional 

indication of classical roots of Quantum Mechanics. 

It is worth mentioning that Aharonov-Bohm effect is 

a source of ideas on the special role of the magnetic 

potential A in Quantum Mechanics and so called 

electron-solenoid unlocal interaction. E. Feinberg [9] was 

the first to show that the interaction between the electron 

current j = qv and the solenoid, due to Faraday induction 

has to be taken into consideration. As a result of this 

interaction, the magnetic field arises outside the solenoid, 

and the Lorentz force qvB  0. We believe that the very 

fact that the interaction term Sin in equation (5) results in 

the correct phase shift in equation (6) shows that the 

classical term Sin in the classical Hamiltonian already 

includes the field arising outside the solenoid due to 

Faraday induction. Indeed, Maxwell equations (which 

include the Faraday induction law) may be derived from 

Hamilton principle of least action S where the charge-

field interaction is described by the term Sin (equation (5)) 

[8]. Thus, an assumption on the unlocal interaction 

becomes unnecessary. 

As to special role of potentials (A, ), Feinberg [9] 

underwent very thorough search but did not find any 

signs of their special role in experiments suggested in [5]. 

No wonder, because the Aharonov-Bohm effect was 

derived in the semiclassical approximation (3) when 

equation (1) reduces to classical equation (2). Then, 

where such a role in Quantum Mechanics arises from? 

The Hamilton function for the electric charge q in the 

electromagnetic field with potentials (A, ) in classical 

electrodynamics is [8] 

  qqS
m

H 
2

2

1
A , (7) 

whereas in Quantum Mechanics it is [3] 
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  qqP
m

H 
2

ˆ
2

1ˆ A , (8) 

where the momentum operator  iP̂ . By using the 

Heisenberg uncertainty principle along with the Coulomb 

gauge one obtains 0ˆˆ  PP AA , and hence the equation 

(8) is rewritten as  

  qqPqP
m

H 
2

222 ˆ2ˆ
2

1ˆ AA . (9) 

Comparison between equations (7) and (9) shows that 

the potentials (A, ) participate in Quantum Mechanics 

exactly in the same way as in the classical 

Electrodynamics, namely, as vector and scalar functions 

of coordinates, respectively, rather than as differential 

operators. 
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